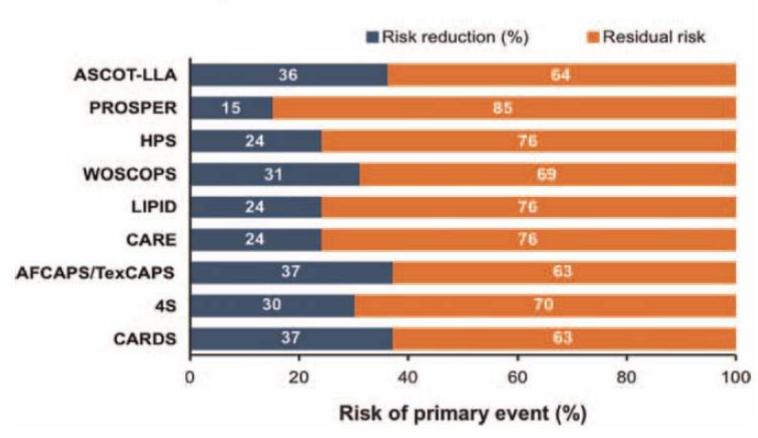


What's New in Other Risk Management?

Gwanpyo Koh

Division of Endocrinology & Metabolism


Department of Internal Medicine

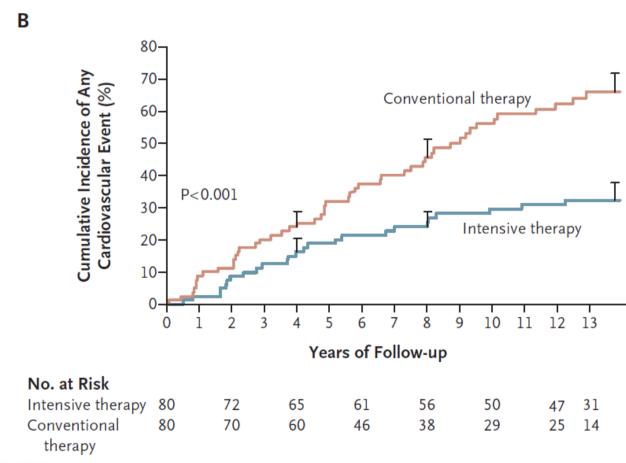
Jeju National University School of Medicine

Residual risk after statin treatment in major intervention trials

Rapezzi. Journal of Hypertension. 2010;28:e606-e607

Treating hypertension only reduces CHD risk ≈25%

Table 2. Fixed and Random Effects Meta-analysis Comparing any Antihypertensive Drug Treatment vs No Treatment for Each Outcome*


Outcome	No. of Trials	Effects Model	RR (95% CI)	P Value for Heterogeneity
Coronary heart disease	24	Fixed	0.86 (0.80-0.93)	.55
		Random	0.87 (0.80-0.94)	.55
Stroke	23	Fixed	0.69 (0.64-0.74)	.004
		Random	0.68 (0.61-0.76)	.004
CHF	7	Fixed	0.54 (0.45-0.66)	.66
		Random	0.60 (0.49-0.74)	.80
Major CVD events	28	Fixed	0.78 (0.74-0.81)	<.001
		Random	0.73 (0.62-0.87)	<.001
CVD mortality	23	Fixed	0.84 (0.78-0.90)	.10
		Random	0.84 (0.78-0.90)	.10
Total mortality	25	Fixed	0.90 (0.85-0.95)	.58
		Random	0.90 (0.85-0.95)	.59

Abbreviations: CHF, congestive heart failure; CI, confidence interval; CVD, cardiovascular disease; RR, relative risk.

*The no treatment comparison group includes placebo-treated controls, participants not treated in open trials, and participants receiving usual care.

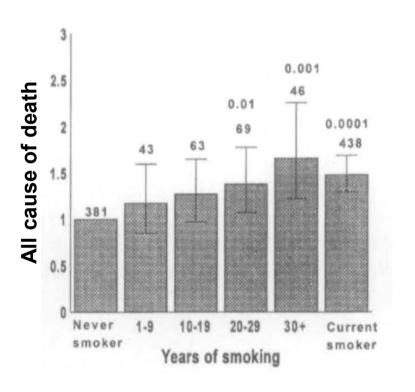
Psaty et al. JAMA. 2003;289(19):2534-44.

Effect of a multifactorial intervention on cardiovascular event in type 2 diabetes

Gaede et al. N Engl J Med. 2008;358(6):580-91.

Strategies for Cardiovascular Protection in Patients with Type 2 Diabetes

- 1. Lipid-modifying therapies
- 2. Blood pressure control
- 3. Smoking cessation
- 4. Antiplatelet therapy
- 5. Exercise and physical activity
- 6. Nutrition therapy



Smoking Cessation

Smoking, in individuals with diabetes, is an independent risk factor for all-cause and cardiovascular mortality

Mortality rate ratios, 95% CIs, the number of deaths, and P values for all-cause and cardiovascular deaths for ex-smokers, compared with current smokers and nonsmokers, by the number of years of smoking. All rate ratios were adjusted for age and duration of diabetes

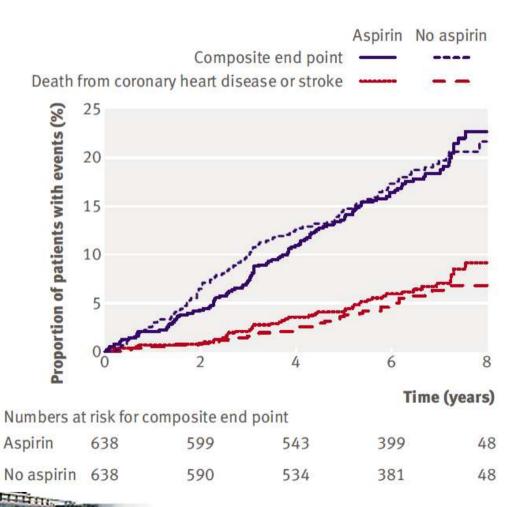
Chaturvedi et al. Diabetes Care. 1997;20(8):1266-72.

Aspirin/Antiplatelet Therapy

제주대학교병원

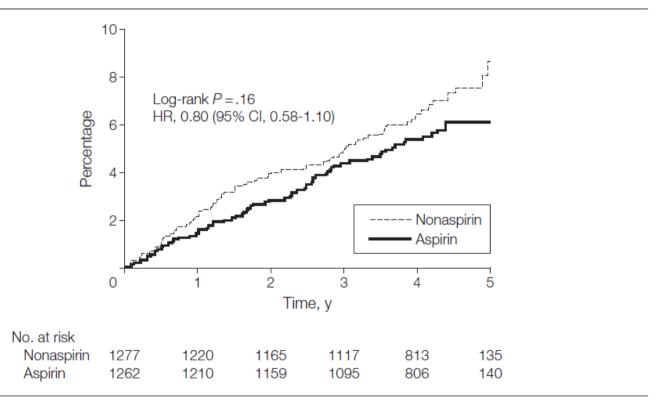
	Number of events (aspirin vs control)		Rate ratio (95% Cl	Yearly absolute difference (% per year)			
	Primary prevention (660 000 person-years)	Secondary prevention (43 000 person-years)	Primary prevention	Secondary prevention	p value for heterogeneity	Primary prevention	Secondary prevention
Major coronary event	934 vs 1115	995 vs 1214	0.82 (0.75-0.90)	0.80 (0.73-0.88)	0.7	-0.06	-1.00*
Non-fatal MI	596 vs 756	357 vs 505	0.77 (0.69-0.86)	0.69 (0.60-0.80)	0.5	-0.05	-0.66
CHD mortality	372 vs 393	614 vs 696	0.95 (0.82-1.10)	0.87 (0.78-0.98)	0.4	-0.01	-0⋅34
Stroke	655 vs 682	480 vs 580	0.95 (0.85-1.06)	0.81 (0.71-0.92)	0.1	-0.01	-0· 4 6*
Haemorrhagic	116 vs 89	36 vs 19	1.32 (1.00-1.75)	1.67 (0.97-2.90)	0.4	0.01	†
Ischaemic	317 vs 367	140 vs 176	0.86 (0.74-1.00)	0.78 (0.61-0.99)	0.5	-0.02	+
Unknown cause	222 vs 226	304 vs 385	0.97 (0.80-1.18)	0.77 (0.66-0.91)	0.1	-0.001	+
Vascular death	619 vs 637	825 vs 896	0.97 (0.87-1.09)	0.91 (0.82-1.00)	0.4	-0.01	-0.29
Any serious vascular event	1671 vs 1883 (0.51% vs 0.57% per year)	1505 vs 1801 (6.69% vs 8.19% per year)	0.88 (0.82-0.94)	0.81 (0.75-0.87)	0.1	-0.07	-1.49*
Major extracranial bleed	335 vs 219	23 vs 6	1.54 (1.30-1.82)	2.69 (1.25-5.76)	0.2	0.03	†

MI=myocardial infarction. CHD=coronary heart disease. Non-fatal MI definitions vary; see methods. *Major coronary event rates (percent per year, aspirin vs control) 6-0 vs 7-4 in post-MI trials and 2-4 vs 3-0 in post-cerebral vascular disease trials; corresponding rates of stroke (mainly of unknown cause) 0-6 vs 0-8 in post-MI trials and 3-9 vs 4-7 in post-cerebral vascular disease trials (webappendix pp 14–18). †Stroke causes, and extracranial bleeds, very incompletely reported.


Table 2: Comparison of proportional and absolute effects of aspirin in primary and secondary prevention trials

ATT Collaboration. Lancet. 2009;373(9678):1849-60.

Factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease (POPADAD trial)



Belch et al. BMJ. 2008;337:a1840

Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes

Figure 2. Total Percentage of Atherosclerotic Events According to Treatment Group

CI indicates confidence interval; HR, hazard ratio.

.

Aspirin partially reduced the development of myocardial infarction in a mixed primary and secondary prevention trial of diabetic patients

Table 7.—Relative Risk of Cardiovascular Events by Study

.

			Total Mortality		Myocardial Infarction		Stroke		Important Vascular Events	
Study	No. Enrolled	No. of Events	Relative Risk	No. of Events	Relative Risk	No. of Events	Relative Risk	No. of Events	Relative Risk	
Early Treatment Diabetic Retinopathy Study All follow-up	3711	706	0.91	524	0.83*	170	1.17	729	0.91	
First 5 years	3711	476	0.80*	371	0.72†	139	1.16	537	0.82*	
Physicians' Health Study ³² All enrolled	22071	444	0.96	378	0.56†	217	1.22	677	0.82†	
Diabetics	533	N	R‡	37	0.39	ı	√ R		NR	
Trial of British male doctors ³³	5139	421	0.90§	N	iR	١	√R		NR	
Antiplatelet Trialists' Collaboration ³⁵ Nondiabetics	63 762	١	ır	N	IR	١	NR	6261	0.77	
Diabetics	4643	١	IR	١	IR .	١	NR .	885	0.81	

^{*}*P*≤.05.

†*P*≤.01.

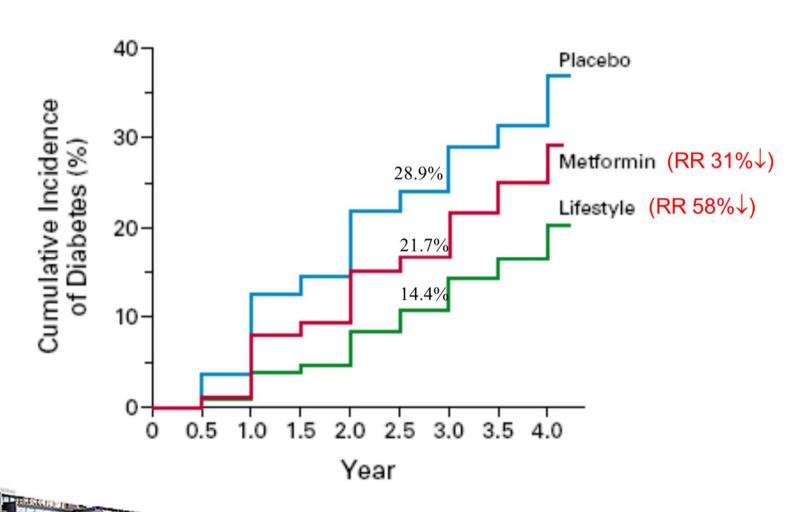
‡NR indicates not reported.

§Ratio of events to person-years.

Odds ratio.

ETDRS Investigators. JAMA 1992;268:1292-300.

Lifestyle Modification



Cumulative Incidence of Diabetes

Diabetes Prevention Program

DPP Research Group. N Engl J Med. 2002;346(6):393-403.

Intentional weight loss per se had a neutral effect on all-cause mortality

Health status of group	Study name	Statistics for each study				RR and 95 % CI
		RR	Lower limit	Upper limit	P	
Healthy	French et al. (1999) ⁽⁴⁷⁾	1-18	0-94	1.48	0-153	
Healthy	Gregg et al. (2003)(31)	0.76	0-60	0.97	0.025	-1-
Healthy	Sørensen et al. (2005)(8)	1-87	1-22	2.87	0.004	
Healthy	Wannamethee et al. (2005)(10)	1.37	0.96	1.95	0.079	
Healthy	Wannamethee et al. (2005) ⁽¹⁰⁾	0-59	0-34	1.01	0.055	- 1
Healthy	Wedick et al. (2002) ⁽⁵⁶⁾	1.27	0-94	1.71	0.118	
Healthy	Wedick et al. (2002) ⁽⁵⁶⁾	1.28	0-95	1.73	0-107	
Healthy	Williamson et al. (1995) ⁽⁴⁵⁾	1-12	0-94	1.33	0-201	
Healthy	Williamson et al. (1995) ⁽⁴⁵⁾	0.98	0.82	1-17	0-824	+
Healthy	Williamson et al. (1999) ⁽⁴⁸⁾	1-09	0.98	1-21	0-109	+
Healthy	Williamson et al. (1999)(48)	1-07	0-96	1-20	0.235	+
Healthy	Yaari & Goldbourt (1998)(46)	1-30	0-94	1-80	0-116	++-
Healthy		:141	1-00	1.22	0.050	♦
Unhealthy	Gregg et al. (2004)(51)	0.83	0-63	1.09	0.175	-+-
Unhealthy	Williamson et al. (1995)(45)	0-80	0-68	0.94	0.007	+
Unhealthy	Williamson et al. (1995)(45)	0.81	0-71	0.92	0.001	+
Unhealthy	Williamson et al. (1999) ⁽⁴⁸⁾	1-01	0-91	1.12	0-851	+
Unhealthy	Williamson et al. (1999) ⁽⁴⁸⁾	1-02	0-94	1-11	0.641	+
Unhealthy	Williamson et al. (2000) ⁽⁴⁾	0.75	0-67	0-84	0.000	+
Unhealthy		0.87	0-77	0.99	0.028	•
Overall		1-01	0-93	1.09	0.892	

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Cardiovascular Effects of Intensive Lifestyle Intervention in Type 2 Diabetes

The Look AHEAD Research Group*

Does an intensive lifestyle intervention designed to produce weight loss decrease CVD morbidity and mortality in overweight and obese adults with type 2 diabetes?

Wing et al. N Engl J Med. 2013;369(2):145-54.

Look AHEAD: Study design

N = 5145 45-74 years with T2DM, BMI ≥25 kg/m² (≥27 kg/m² if taking insulin)

Usual medical care+ diabetes support andeducation for 4 years

a planned maximum F/U of 13.5 years

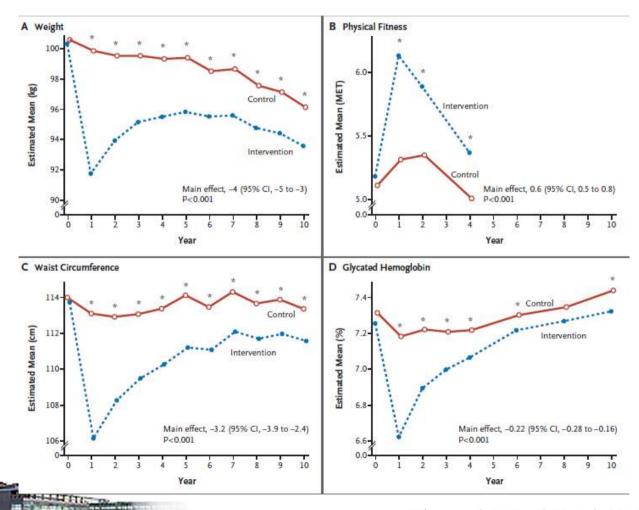
Usual medical care
+ lifestyle intervention* for
4 years, with maintenance
counseling thereafter

Primary endpoint: CV death, nonfatal MI, nonfatal stroke, hospitalization for angina

- *≥7% mean weight loss with hypocaloric diet ± pharmacologic therapy
 + ≥175 min/week moderate physical activity
- Diet = 1200-1500 kcal/day (<250 lbs) or 1500-1800 kcal/day (≥250 lbs)</p>

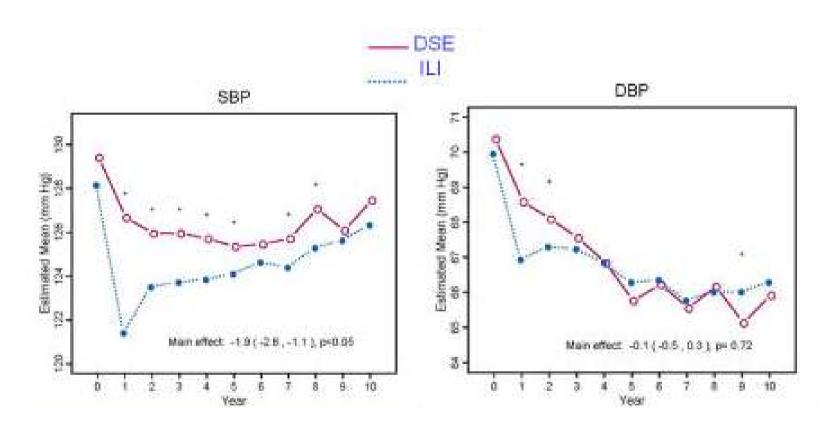
Look AHEAD Research Group. Control Clin Trials. 2003;24:610-28; Obesity. 2006;14:737-52.

Characteristics of the patients at baseline-Look AHEAD

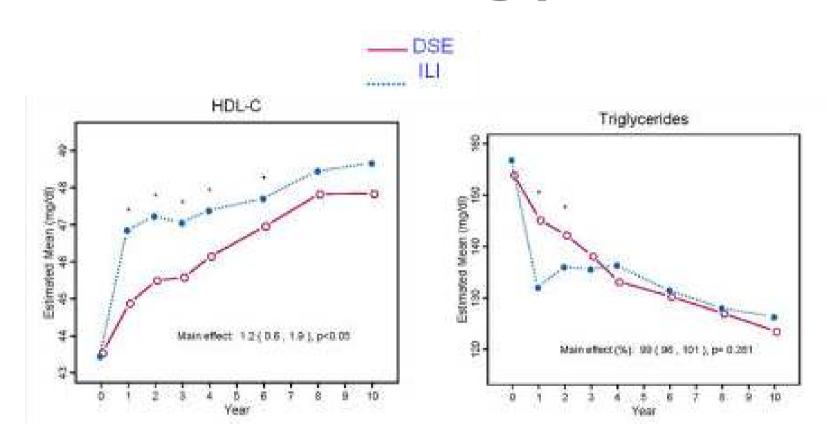

Variable	Control Group (N = 2575)	Intervention Group (N = 2570)
Age — yr	58.9±6.9	58.6±6.8
Female sex — no. (%)	1537 (59.7)	1526 (59.4)
Race or ethnic group — no. (%)†		
Black	404 (15.7)	400 (15.6)
Native American	128 (5.0)	130 (5.1)
Asian or Pacific Islander	21 (0.8)	29 (1.1)
White	1631 (63.3)	1621 (63.1)
Hispanic	340 (13.2)	340 (13.2)
Other	51 (2.0)	50 (1.9)
History of cardiovascular disease — no. (%)‡	348 (13.5)	366 (14.2)
Use of insulin — no. (%)∫	410 (16.5)	382 (15.4)
Current smoking — no. (%)	110 (4.3)	117 (4.6)
Median duration of diabetes (interquartile range) — yr	5.0 (2.0–10)	5.0 (2.0–10)
Weight — kg	101±19	101±20

369(2):145-54.

RSITY HOSPITAL


Changes in weight, physical fitness, waist circumference, and glycated hemoglobin levels during 10 years of follow-up-Look AHEAD

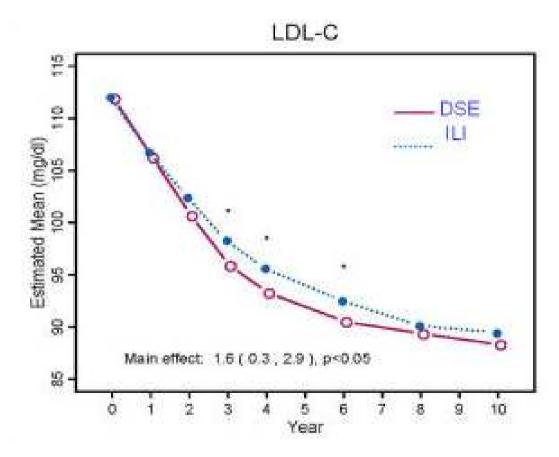
Changes in blood pressures



ILI: intensive lifestyle intervention (intervention group) **DSE**: diabetes support and education (control group)

Wing et al. N Engl J Med. 2013;369(2):145-54.

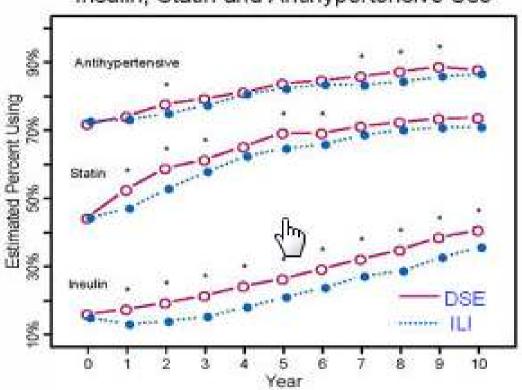
HDL-C and Triglyeride


ILI: intensive lifestyle intervention (intervention group) **DSE**: diabetes support and education (control group)

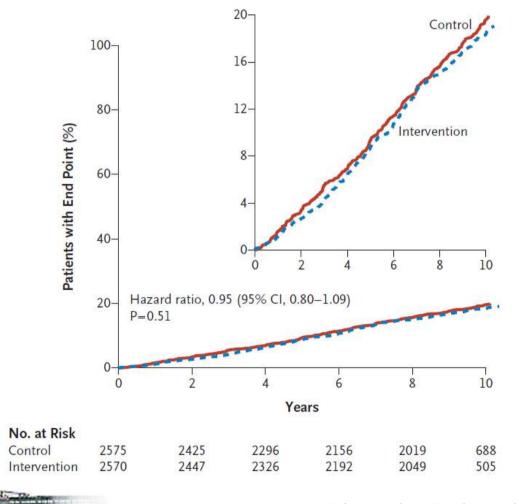
Wing et al. N Engl J Med. 2013;369(2):145-54.

DSE had significantly greater reductions in LDL cholesterol than ILI

ILI: intensive lifestyle intervention (intervention group)


DSE: diabetes support and education (control group)

DSE participants had significantly greater use of medications than ILI



ILI: intensive lifestyle intervention (intervention group)

DSE: diabetes support and education (control group)

Primary outcome in prespecified subgroups-Look AHEAD

Subgroup	Control	Intervention	Hazard Ratio (95% CI)	P Value for Interaction
	no. of events (r	ate/100 person-yr)	
Overall	418 (1.92)	403 (1.83)	0.95 (0.83–1.09)	
Cardiovascular disease at baseline			1	0.06
No	274 (1.42)	240 (1.23)	0.86 (0.72–1.02)	
Yes	144 (5.92)	163 (6.56)	1.13 (0.90–1.42)	
Sex				0.73
Male	245 (2.94)	232 (2.72)	0.93 (0.78–1.11)	
Female	173 (1.29)	171 (1.26)	0.97 (0.79–1.20)	
Race or ethnic group			1	0.17
Black	46 (1.32)	63 (1.82)	1.34 (0.91–1.96)	
Native American	13 (1.18)	10 (0.86)	0.74 (0.31–1.76)	
Asian or Pacific Islander	3 (1.67)	1 (0.38)	← →	
White	303 (2.19)	286 (2.06)	0.94 (0.80–1.11)	
Other	10 (2.35)	12 (2.96)	1.15 (0.45–2.89)	
Hispanic	43 (1.54)	31 (1.06)	0.66 (0.41–1.05)	
			0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00	
			Intervention Control Better Better	

Wing et al. N Engl J Med. 2013;369(2):145-54.

Cumulative hazard of very-high-risk CKD

ILI: intensive lifestyle intervention (intervention group)

DSE: diabetes support and education (control group)

73rd scientific session of ADA. 2013

JEJU NATIONAL UNIVERSITY HOSPITAL

Conclusions-Look AHEAD

- Intensive lifestyle intervention program did not reduce the risk of cardiovascular morbidity and mortality compared with a control program in overweight and obese participants with type 2 diabetes
 - Explanations considered for lack of significant differences in CVD event rates
 - ✓ CVD was developed less than anticipated
 - ✓ Small and non-sustained differences in body weight between groups
 - ✓ Greater use of statins in control group
- Modest glycemic improvement through intensive lifestyle modification could reduce the development of diabetic nephropathy

Wing et al. N Engl J Med. 2013;369(2):145-54.

Omega-3 Fatty Acids

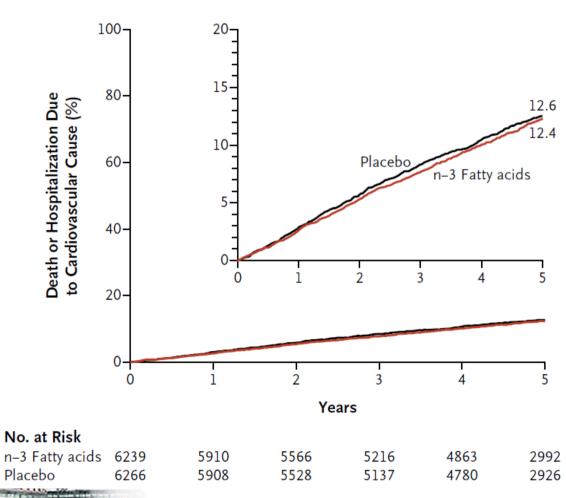
제주대학교병원

Meta-analysis of RCTs showed that supplementation with the marine n-3 fatty acids reduced the rate of death from CHD

No with event/ No in group

	NO III	group			
Study	Fish oil	Placebo	Odds ratio (random) (95% CI)	Weight (%)	Odds ratio (random) (95% CI)
Sacks et al 1995 ^{w10}	0/41	1/39	←■ →	0.20	0.31 (0.01 to 7.82)
Singh et al 1997 ^{w11}	14/122	26/118		4.10	0.46 (0.23 to 0.93)
GISSI-Prevenzione 1999w1	291/5666	348/5658		79.77	0.83 (0.70 to 0.97)
Johansen et al 1999 ^{w8}	1/250	3/250	←	0.40	0.33 (0.03 to 3.20)
Von Shacky et al 1999 ^{w12}	0/111	1/112	← ■ →	0.20	0.33 (0.01 to 8.27)
Durrington et al 2001w7	0/30	1/29	← ■ →	0.20	0.31 (0.01 to 7.96)
Nilsen et al 2001 ^{w9}	8/150	8/150		2.02	1.00 (0.37 to 2.74)
Leaf et al 2005 ^{w3}	9/200	9/202		2.29	1.01 (0.39 to 2.60)
Raitt et al 2005 ^{w2}	2/100	5/100	← ■	0.74	0.39 (0.07 to 2.05)
Brouwer et al 2006 ^{w4}	6/273	13/273	←	2.12	0.45 (0.17 to 1.20)
JELIS 2007 ^{w5}	29/9326	31/9319		7.96	0.93 (0.56 to 1.55)
Total (95% CI)	16 269	16 250	•	100.00	0.80 (0.69 to 0.92)
Total events: 360 (fish oil), 446	(placebo)		0.2 0.5 1 2 5		
Test for heterogeneity: χ^2 =6.90	, df=10, P=0.74, I	2=0%	0.2 0.5 1 2 5		

Test for overall effect: z=3.08, P=0.002


Fig 3 | Effect of fish oil on death from cardiac causes

León et al. BMJ. 2008;337:a2931.

Favours fish oil

Favours control

Risk and Prevention Study. N Engl J Med. 2013;368(19):1800-8.

제주대학교병원

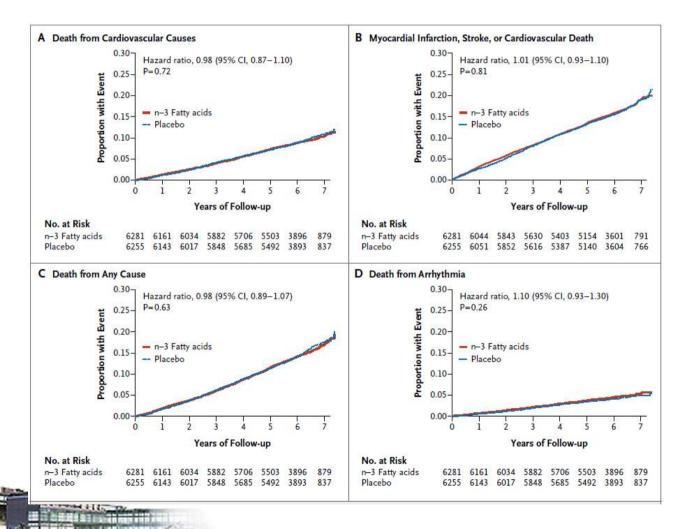
JEJU NATIONAL UNIVERSITY HOSPITAL

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

n–3 Fatty Acids and Cardiovascular Outcomes in Patients with Dysglycemia

The ORIGIN Trial Investigators*


 We tested the hypothesis that long-term supplementation with 1 g of n— 3 fatty acids would reduce the rate of cardiovascular events in patients with T2DM, IGT and IFG

ORIGIN Trial. N Engl J Med. 2012;367(4):309-18.

Daily supplementation with 1 g of n-3 fatty acids did not reduce the rate of cardiovascular events in dysglycemic patients at high risk for cardiovascular events

.

CONCLUSIONS

- What's New in Other Risk Management? -
- To date, many measures have been developed and they've been attempted for CV protection
 - But CVD still remains the main cause of death in people with diabetes
- Recent clinical trials showed that traditional CV protective methods were less effective than we expected
 - Therefore, innovative measures are required for a noticeable reduction in CV risk in diabetic patients

Thank you for your attention

Back-up Slides

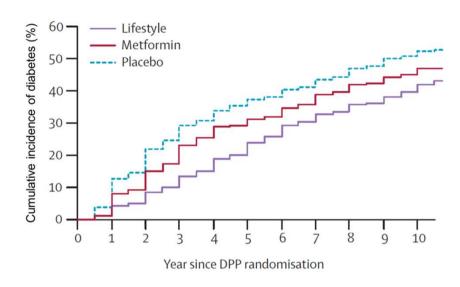
A review and meta-analysis of the effect of weight loss on all-cause mortality risk

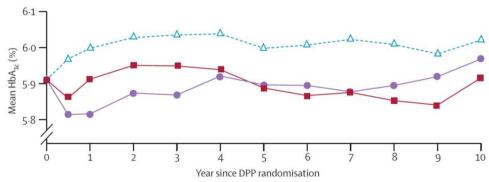
Harrington et al. Nutr Res Rev. 2009 Jun;22(1):93-108.

Reasons for intentional weight loss, unintentional weight loss, and mortality in older men

Table 2. Adjusted Relative Risks of Mortality From All Causes and CVD and Non-CVD Causes by Perceived Weight Change Categories and by Reasons for Intentional Weight Loss

				Intentional Weight Loss			
Mortality	No Change (n = 2539)	Weight Gain (n = 1378)	Unintentional Weight Loss (n = 527)	AII (n = 342)	Personal Reason (n = 178)	Physician's Advice/III Health (n = 164)	
Total mortality							
No. of deaths	414	200	191	53	16	37	
Adjusted RR (95% CI)*	1.00 (Referent)	0.95 (0.71-1.18)	1.88 (1.47-2.40)	1.04 (0.94-1.14)	0.62 (0.36-1.05)	1.63 (1.15-2.30)	
Adjusted RR (95% CI) + disease†	1.00 (Referent)	0.86 (0.69-1.08)	1.71 (1.33-2.19)	1.00 (0.91-1.10)	0.59 (0.34-1.00)	1.37 (0.96-1.94)	
CVD mortality							
No. of deaths	183	98	76	24	10	14	
Adjusted RR (95% CI)*	1.00 (Referent)	1.06 (0.91-1.23)	1.68 (1.09-2.30)	1.05 (0.91-1.21)	0.95 (0.48-1.86)	1.31 (0.75-2.29)	
Adjusted RR + disease (95% CI)†	1.00 (Referent)	0.94 (0.68-1.30)	1.63 (1.16-2.43)	0.98 (0.85-1.14)	0.90 (0.46-1.78)	0.98 (0.55-1.72)	
Non-CVD mortality‡							
No. of deaths	231	102	115	29	6§	23	
Adjusted RR (95% CI)*	1.00 (Referent)	0.86 (0.63-1.17)	2.06 (1.41-2.72)	1.03 (0.90-1.17)	0.38 (0.16-0.92)	1.85 (1.19-2.88)	
Adjusted RR (95% CI) + disease†	1.00 (Referent)	0.79 (0.58-1.25)	1.79 (1.28-2.49)	1.01 (0.89-1.16)	0.36 (0.15-0.87)	1.74 (1.11-2.73)	


Wannamethee et al. Arch Intern Med. 2005 May 9;165(9):1035-40.



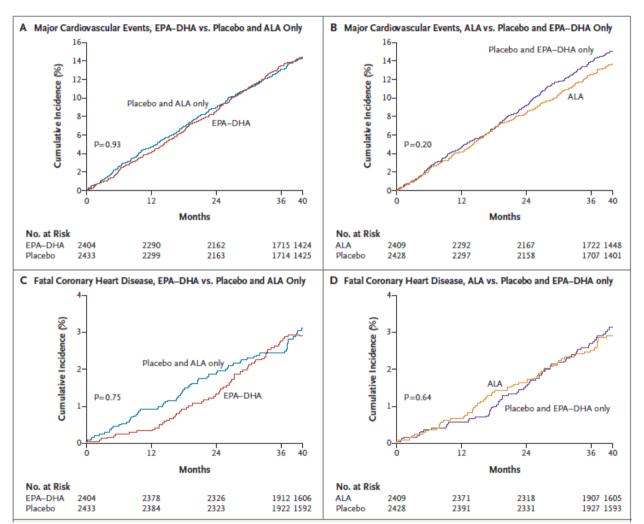
Weight loss and mortality in persons with type-2 diabetes mellitus

10-year follow-up of diabetes incidence in the Diabetes Prevention Program Outcomes Study

DPP Research Group. Lancet. 2009;374(9702):1677-86.

Primary outcome-Look AHEAD

- the first occurrence of a composite cardiovascular outcome
 - death from cardiovascular causes
 - nonfatal myocardial infarction
 - nonfatal stroke
 - hospitalization for angina



EPA: eicosapentaenoic acid DHA: docosahexaenoic acid

ALA: alpha-linolenic acid

Alpha Omega Trial. N Engl J Med. 2010;363(21):2015-26.

제주대학교병원

JEJU NATIONAL UNIVERSITY HOSPITAL

Conclusions-Look AHEAD

- Individuals with diabetes can successfully lose weight and maintain modest weight losses long-term
- Intensive lifestyle interventions improve CVD risk factors
- Intensive lifestyle intervention improved glycemic control relative to DSE
- Look AHEAD found that an intensive lifestyle intervention program did not reduce the risk of cardiovascular morbidity and mortality compared with a control program of diabetes support and education in overweight and obese participants with type 2 diabetes

